## Irciformonins E – K, C<sub>22</sub>-Trinorsesterterpenoids from the Sponge Ircinia formosana

by Ya-Ching Shen<sup>\*a</sup>), Pei-Show Shih<sup>b</sup>), Yun-Sheng Lin<sup>b</sup>), Yu-Chi Lin<sup>b</sup>), Yao-Haur Kuo<sup>c</sup>), Yuh-Chi Kuo<sup>d</sup>), and Ashraf Taha Khalil<sup>a</sup>)

<sup>a</sup>) School of Pharmacy, College of Medicine, National Taiwan University, Jen-Ai Rd. Sec. 1, Taipei 100, Taiwan, R.O.C. (phone: +886-02-3123456, ext. 2226; fax: +886-02-23919098; e-mail: ycshen@ ntu.edu.tw)

<sup>b</sup>) Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, R.O.C.

<sup>c</sup>) National Research Institute of Chinese Medicine, Taipei, Taiwan, R.O.C. <sup>d</sup>) Department of Life Science, Fu-Jen University, No. 510, Chung-Cheng Rd., Hsinchuang 242,

Taipei Hsien, Taiwan, R.O.C.

Chemical investigation of the sponge *Ircinia formosana* resulted in the isolation of seven new linear  $C_{22}$ -sesterterpenoids, irciformonins E-K (1–7) in addition to irciformonin A (8), a previously isolated furanosesterterpenoid (=a furan-moiety-containing sesterterpenoid) from the same species. The structures were determined by interpretation of HR-ESI-MS and 2D-NMR spectra. The structure of irciformonin A (8) was revised. Compound 5 exhibited significant inhibition of peripheral blood mononuclear cell proliferation induced by phytohemaglutinin.

**Introduction.** – Sponges (poriferans) are simple sedentary marine organisms that produce a wide variety of secondary metabolites that may act as a chemical defense against microorganisms and predators [1][2]. Sponges of the genus Ircinia produce and exude low-molecular-mass volatile compounds (e.g.,  $Me_2S$  and Me-N=C=S) that give them an unpleasant garlic odor [3]. Several steroid [4], sphingolipid [5], alkaloid [6], hydroquinone [7], and cyclic hexapeptide [8] derivatives have been isolated from this genus, in addition to furanosester terpenes (=a furan-moiety-containing sester terpenes) which are considered as one of the major constituents [9][10]. Furanosesterterpenes were frequently isolated from other marine sponge genera such as Spongia, Spongionella, Cacospongia, Dysidea, Sarcotragus, Amphimedon, and Hippospongia and have chemotaxonomic importance [11][12]. Some furanosesterterpenes were reported to possess antimicrobial [13], cytotoxic [14][15], and inhibition of lymphocytic proliferation activities [14]. In a search for bioactive marine metabolites from the local fauna, a chemical investigation of a new collection of Ircinia formosana was carried out, which resulted in the isolation of seven new C22-furanosesterterpenoids, irciformonins  $E-K^1$  (1-7), in addition to irciformonin A (8), previously isolated from the same species [16]. The biological activities of sesterterpenes 1-7 were tested against HSV-1 and evaluated with peripheral blood mononuclear cell proliferation induced by phytohemaglutinin.

<sup>1)</sup> Arbitrary atom numbering; for systematic names, see Exper. Part.

<sup>© 2009</sup> Verlag Helvetica Chimica Acta AG, Zürich



Results and Discussion. - Solvent fractionation and multiple chromatographic separations over normal-phase and reversed-phase silica gel of the lipophilic extract of Ircinia formosana afforded seven new irciformonins E-K (1-7). The HR-ESI-MS data of **1** revealed a molecular-ion peak at m/z 397.1989 ( $[M + Na]^+$ ) suggesting a molecular formula C<sub>22</sub>H<sub>30</sub>O<sub>5</sub> and eight degrees of unsaturations. The IR spectrum displayed absorption bands diagnostic for a 5-membered lactone (1768 cm<sup>-1</sup>) and C=O (1710 cm<sup>-1</sup>) functionalities. The <sup>1</sup>H-NMR data (Table 1) disclosed signals of an Obearing CH group at  $\delta(H)$  3.99 (H-C(15)), an olefin moiety at  $\delta(H)$  5.28 (t, J= 6.5 Hz, H–C(7)), and three signals of a monosubstituted furan at  $\delta(H)$  7.34, 7.22, and 6.28 (3 br. s), consistent with a low-resolution EI-MS fragment ion at m/z 67  $(C_4H_3O^+)$ . The <sup>13</sup>C-NMR spectrum (*Table 2*) revealed a ketone ( $\delta$ (C) 208.3), lactone  $C = O(\delta(C) 177.0)$ , tri-substituted olefin ( $\delta(C) 129.2$  (CH), 129.6 (C)), as well as a furan moiety ( $\delta$ (C) 142.7 (CH),  $\delta$ (C) 111.0 (CH),  $\delta$ (C) 138.9 (CH), and  $\delta$ (C) 124.7 (C)) [17]. The CH<sub>2</sub> group at  $\delta$ (H) 2.50 (m, CH<sub>2</sub>(5)) exhibited HMBCs to C(2), C(4), and an olefinic CH (C(7)), a NOESY correlation to H-C(4) of the furan ring, as well as a COSY cross-peak to the adjacent CH<sub>2</sub> at  $\delta(H)$  2.32 (CH<sub>2</sub>(6)) (*Figs. 1* and 2). The vinylic Me at  $\delta(H)$  1.60 correlated with the olefinic CH at  $\delta(C)$  129.2 (C(7)) proving the presence of the structural unit furanyl- $CH_2CH_2CH=C(Me)$  + that was further supported by an EI-MS fragment ion at m/z 135. The tertiary Me at  $\delta(H)$  1.35 (Me(20)) correlated to a CH<sub>2</sub> at  $\delta$ (C) 28.7 (C(17)) whose H-atoms ( $\delta$ (H) 2.27 and 1.85) <sup>3</sup>Jcorrelated with a quaternary C–O moiety at  $\delta$ (C) 87.4 (C(16)) and coupled with CH<sub>2</sub>

| $f^{1}$ ). $\delta$ in ppm, J in Hz.     |  |
|------------------------------------------|--|
| DCl <sub>3</sub> ) for Irciformonins 1-7 |  |
| ata (300 MHz, 0                          |  |
| <sup>1</sup> H-NMR Spectroscopic Dt      |  |
| Table 1.                                 |  |

|                       |                                        | •                                 | ,                             | •                       |                                     |                        |                            |
|-----------------------|----------------------------------------|-----------------------------------|-------------------------------|-------------------------|-------------------------------------|------------------------|----------------------------|
|                       | 1                                      | <b>2</b> <sup>a</sup> )           | 3                             | <b>4</b> <sup>b</sup> ) | <b>5</b> <sup>c</sup> )             | 6                      | 7                          |
| H-C(1)                | 7.34 (br. s)                           | 7.31 (br. s)                      | 7.33 (br. s)                  | 7.29 (br. s)            | 7.31(br. s)                         | 7.34 (br. s)           | 4.77 (br. s, 2 H)          |
| H-C(2)                | 6.28  (br.  s)                         | 6.25 (br. s)                      | 6.28 (br. s)                  | 6.24 (br. s)            | 6.25 (br. s)                        | 6.27 (br. s)           | 7.12 (br. s)               |
| H-C(4)                | 7.22  (br.  s)                         | 7.18 (br. s)                      | 7.21  (br.  s)                | 7.17  (br.  s)          | $7.18 (\mathrm{br.}s)$              | 7.20  (br.  s)         |                            |
| $CH_2(5)$             | 2.47-2.53 (m)                          | 2.40 $(t, J = 7.8)$               | 2.39 - 2.43 (m)               | 2.40 (t, J = 7.4)       | 2.38-2.44 (m)                       | 2.45 $(t, J = 7.7)$    | 2.34 (d, J = 6.0)          |
| $CH_2(6)$             | 2.30-2.35 (m)                          | 2.18-2.24 (m)                     | 2.21 - 2.27 (m)               | 2.21-2.26 (m)           | 2.17 - 2.23 (m)                     | 2.23-2.28 (m)          | 2.25 - 2.30 (m)            |
| H-C(7)                | 5.28(t, J = 6.5)                       | 5.18(t, J = 6.3)                  | 5.16(t, J = 6.6)              | 5.16(t, J = 6.5)        | 5.15(t, J = 6.5)                    | 5.19 $(t, J = 6.7)$    | 5.10  (br.  t, J = 6.8)    |
| $CH_2(9)$             | 3.08(s)                                | 2.23-2.28(m),                     | 2.00 (t, J = 7.0)             | 2.18-2.24 (m),          | 2.69 (d, J = 6.5)                   | 2.68 (d, J = 5.7)      | 2.70 (d, J = 5.3)          |
|                       |                                        | 2.10-2.14(m)                      |                               | $2.02 - 2.08 \ (m)$     |                                     |                        |                            |
| H-C(10)               | I                                      | 5.59 (br. $td$ , $J = 7.0, 7.0$ ) | $2.04 - 2.10 \ (m)$           | $3.95 - 4.01 \ (m)$     | 5.49 (dt, J = 15.5, 6.5)            | 5.55-5.61 (m)          | 5.50-5.56(m)               |
| $CH_{2}(11)$          | 2.64 (d, J = 13.8),<br>2.56 - 2.62 (m) | 5.08 $(d, J = 7.5)$               | 5.16 $(t, J = 6.6)$           | $5.01 \ (d, J = 8.8)$   | 5.34 (dd, J = 15.5, 1.0)            | 5.48 $(d, J = 15.6)$   | 5.40 $(d, J = 15.2)$       |
| CH <sub>2</sub> (13)  | 1.86 - 1.91 (m)                        | $1.97 - 2.03 \ (m)$               | 2.21-2.47 ( <i>m</i> ),       | 2.18-2.24 ( <i>m</i> ). | $1.82 - 1.87 \ (m),$                | $1.78 - 1.84 \ (m),$   | $1.87 - 1.94 \ (m),$       |
| -<br>1                |                                        |                                   | 2.04 - 2.10 (m)               | 2.02 - 2.07 (m)         | 1.56 - 1.62 (m)                     | 1.57 - 1.63 (m)        | 1.65 - 1.71 (m)            |
| $CH_{2}(14)$          | $1.88 - 1.94 \ (m),$                   | $1.65 - 1.71 \ (m),$              | 1.52 - 1.58 (m),              | 1.39 - 1.45 (m),        | 1.59 - 1.65 (m),                    | 1.57 - 1.63 (m),       | 1.86 - 1.92 (m),           |
|                       | $1.67 - 1.73 \ (m)$                    | $1.60 - 1.66 \ (m)$               | $1.37 - 1.43 \ (m)$           |                         | $1.36 - 1.42 \ (m)$                 | $1.37 - 1.43 \ (m)$    | 1.73 - 1.77 (m)            |
| H-C(15)               | $3.96 - 4.02 \ (m)$                    | $4.99 \ (dd, J = 9.9, 2.0)$       | 3.64 (d, J = 10.1)            | 3.59 (d, J = 9.9)       | 3.58 (d, J = 9.8)                   | 3.65 (d, J = 9.4)      | 3.98 (br. t, J = 6.5)      |
| $CH_{2}(17)$          | 2.24–2.31 (m),                         | 2.18-2.24 (m),                    | 2.38–2.44 ( <i>m</i> ),       | 2.37-2.43 (m),          | $2.34-2.40 \ (m),$                  | 2.42-2.48 (m),         | 2.22-2.28 (m),             |
|                       | $1.82 - 1.88 \ (m)$                    | $1.87 - 1.93 \ (m)$               | 1.79 - 1.85 (m)               | $1.78 - 1.84 \ (m)$     | $1.76 - 1.82 \ (m)$                 | $1.78 - 1.83 \ (m)$    | $1.24 - 1.28 \ (m)$        |
| $CH_{2}(18)$          | 2.53–2.59 ( <i>m</i> )                 | 2.58(t, J=8.1)                    | $2.58 - 2.64 \ (m)$           | 2.55-2.61 (m)           | 2.54-2.61 (m)                       | 2.61–2.67 ( <i>m</i> ) | 2.66-2.72 (m),             |
|                       |                                        |                                   |                               |                         |                                     |                        | 2.49-2.55(m)               |
| Me(20)                | 1.35(s)                                | 1.37(s)                           | 1.35(s)                       | 1.31(s)                 | 1.32(s)                             | 1.35(s)                | 1.35(s)                    |
| Me(21)                | 1.25(s)                                | 1.60(s)                           | 1.61(s)                       | 1.64(s)                 | 1.22(s)                             | 1.30(s)                | 1.29(s)                    |
| Me(22)                | 1.60(s)                                | 1.61(s)                           | 1.58(s)                       | 1.57(s)                 | 1.54(s)                             | 1.56(s)                | 1.55(s)                    |
| <sup>a</sup> ) Two Ac | O groups appear a                      | t $\delta(H) 2.06(s)$ and 1.95 (  | (s). <sup>b</sup> ) One MeO g | roup appears at         | δ(H) 3.12 (s). <sup>c</sup> ) One N | 1eO group appear       | s at $\delta(H)$ 3.20 (s). |

## Helvetica Chimica Acta – Vol. 92 (2009)

|       | 1         | 2                  | 3         | 4         | 5         | 6         | 7                 |
|-------|-----------|--------------------|-----------|-----------|-----------|-----------|-------------------|
| C(1)  | 142.7 (d) | 142.6 ( <i>d</i> ) | 142.6 (d) | 142.6 (d) | 142.6 (d) | 142.6 (d) | 70.2 ( <i>t</i> ) |
| C(2)  | 111.0(d)  | 111.1(d)           | 111.1(d)  | 111.1(d)  | 111.1(d)  | 111.1(d)  | 144.6(d)          |
| C(3)  | 124.7(s)  | 124.8(s)           | 125.0(s)  | 124.9(s)  | 124.8(s)  | 124.9(s)  | 133.7 (s)         |
| C(4)  | 138.9(d)  | 138.9 ( <i>d</i> ) | 138.8(d)  | 138.8(d)  | 138.8 (d) | 138.9 (d) | 174.0(s)          |
| C(5)  | 24.7(t)   | 24.9(t)            | 25.0(t)   | 24.9(t)   | 24.9(t)   | 25.0(t)   | 25.4(t)           |
| C(6)  | 28.6(t)   | 28.4(t)            | 28.4(t)   | 28.5(t)   | 28.6(t)   | 28.5(t)   | 25.7(t)           |
| C(7)  | 129.2(d)  | 127.4(d)           | 123.9(d)  | 126.5(d)  | 124.9(d)  | 124.9(d)  | 123.6(d)          |
| C(8)  | 129.6(s)  | 131.3(s)           | 135.6(s)  | 132.3(s)  | 134.3 (s) | 134.1 (s) | 135.4 (s)         |
| C(9)  | 55.5(t)   | 45.2(t)            | 39.6(t)   | 45.7(t)   | 42.7(t)   | 42.5(t)   | 42.2(t)           |
| C(10) | 208.3(s)  | 69.6(d)            | 26.5(t)   | 76.1(d)   | 129.6(d)  | 126.3(d)  | 125.7(d)          |
| C(11) | 51.7(t)   | 124.5(d)           | 125.4(d)  | 126.4(d)  | 135.1(d)  | 138.1(d)  | 136.5(d)          |
| C(12) | 82.2(s)   | 138.6(s)           | 134.4(s)  | 138.8(s)  | 77.1(s)   | 72.8(s)   | 83.2 (s)          |
| C(13) | 37.0(t)   | 35.6(t)            | 36.2(t)   | 36.1(t)   | 39.8(t)   | 38.9(t)   | 37.4(t)           |
| C(14) | 27.2(t)   | 27.7(t)            | 29.0(t)   | 29.1(t)   | 25.4(t)   | 29.6(t)   | 27.1(t)           |
| C(15) | 83.6 (d)  | 76.0(d)            | 75.5(d)   | 75.2(d)   | 76.3(d)   | 76.0(d)   | 82.7 (d)          |
| C(16) | 87.4 (s)  | 86.2 (s)           | 88.9 (s)  | 89.1 (s)  | 88.9 (s)  | 89.0(s)   | 87.5 (s)          |
| C(17) | 28.7(t)   | 29.9(t)            | 27.8(t)   | 27.8(t)   | 28.5(t)   | 28.1(t)   | 29.3(t)           |
| C(18) | 29.8(t)   | 28.7(t)            | 29.5(t)   | 29.5(t)   | 29.4(t)   | 29.4(t)   | 29.6(t)           |
| C(19) | 177.0(s)  | 176.1(s)           | 177.3 (s) | 177.5 (s) | 177.4(s)  | 177.3 (s) | 177.1(s)          |
| C(20) | 23.5(q)   | 24.8(q)            | 23.0(q)   | 23.1(q)   | 22.6(q)   | 22.8(q)   | 23.0(q)           |
| C(21) | 27.3(q)   | 16.7(q)            | 16.0(q)   | 16.7(q)   | 21.5(q)   | 28.5(q)   | 27.3(q)           |
| C(22) | 16.5(q)   | 16.4(q)            | 15.9(q)   | 16.6(q)   | 16.2(q)   | 16.2(q)   | 16.1(q)           |
| MeO   |           |                    | .17       | 55.7(q)   | 50.1(q)   |           | (1)               |
| AcO   |           | 20.9(q), 170.3(s)  |           |           |           |           |                   |
| AcO   |           | 21.2(q), 172.2(s)  |           |           |           |           |                   |





Fig. 1. Selected HMBC  $(H \rightarrow C)$  and COSY (-) of 1

H-atoms at  $\delta(H)$  2.56 (CH<sub>2</sub>(18)). The latter H-atoms correlated with a lactone C=O ( $\delta(C)$  177.0) indicating a  $\gamma$ -methyl- $\gamma$ -lactone ring (m/z 99). The tertiary Me at  $\delta(H)$  1.25 (Me(21)) correlated with the CH<sub>2</sub> at  $\delta(C)$  37.0 (C(13)). The correlations of CH<sub>2</sub>(13) ( $\delta(H)$  1.89) with a CH–O at  $\delta(C)$  83.6 (C(15)) and of H–C(15) to C(14), a quaternary C–O (C(16)), and Me(20), as well as the COSY cross-peaks of CH<sub>2</sub>(13)/CH<sub>2</sub>(14)/H–C(15) confirmed the attachment of the tetrahydrofuran unit to the lactone ring through a C(15)–C(16) link. Both the CH<sub>2</sub> at  $\delta(H)$  3.08 (CH<sub>2</sub>(9)) and 2.64 and 2.59 (CH<sub>2</sub>(11)) <sup>2</sup>*J*-correlated to the ketonic C-atom at  $\delta(C)$  208.3 (C(10)), and the correlations Me(22)/C(9), CH<sub>2</sub>(9)/C(7), CH<sub>2</sub>(11)/C(13), and Me(21)/C(11) and C(13) established the C-atom sequence C(8) to C(12). The geometry of the trisubstituted C=C bond (C(7)) was assigned as (*E*) on the basis of an NOE H–C(7)/CH<sub>2</sub>(9) and the high-field resonance of the vinylic Me group ( $\delta(C)$  16.5 (C(22))) [9][18]. The NOESY

data confirmed the structure of **1** (*Fig. 2*), and the relationship of the lactone and tetrahydrofuran rings was established by the correlations  $CH_2(14)/CH_2(17)$ . The NOESY correlations  $H-C(15)/H_{\beta}-C(14)$ ,  $Me(21)/H_{\alpha}-C(11)$  suggested an  $\alpha$ -configuration for Me(21) and  $\beta$ -configuration for H-C(15). The presence of NOEs between H-C(15) and Me(20) favored  $\beta$ -orientation of the latter. Based on these findings, irciformin E was assigned structure **1**.



Fig. 2. Key NOESY correlations of 1<sup>1</sup>)

The molecular formula of 2 was determined as  $C_{26}H_{36}O_7$  from HR-ESI-MS at m/z483.2362 ( $[M+Na]^+$ ) and <sup>13</sup>C-NMR data (*Table 2*). The IR spectrum showed absorption bands characteristic of a  $\gamma$ -lactone (1768 cm<sup>-1</sup>) and ester (1738 cm<sup>-1</sup>) groups. The <sup>13</sup>C-NMR data indicated the presence of a monosubstituted furan ring  $(\delta(C)$  142.6, 111.1, 124.8 and 138.9; EI-MS fragment ion at m/z 67) and a lactone ring  $(\delta(C) 176.1)$ , two tri-substituted olefin moieties  $(\delta(C) 127.4 \text{ (CH)} \text{ and } 131.3 \text{ (C)}, \text{ and } 131.3 \text{ (C)})$ 124.5 (CH) and 138.6 (C)), in addition to two Ac groups ( $\delta$ (C) 170.3 and 20.9, and 172.2 and 21.2) and two CH–O groups ( $\delta$ (C) 69.6 (C(10)) and 76.0 (C(15))). The <sup>1</sup>H-NMR (*Table 1*) revealed two AcO ( $\delta$ (H) 2.06 and 1.95), along with three quaternary Me groups ( $\delta$ (H) 1.37, 1.60, and 1.67), and two CH–O groups ( $\delta$ (H) 5.59 and 4.99). The HMBC and COSY data (Fig. 3) established the presence of the structural unit furanyl-CH<sub>2</sub>CH<sub>2</sub>CH=C(Me)-, identical with that of **1**. The CH-O group at  $\delta(H)$ 5.59 (br. td, J = 7.0, 7.0 Hz, H - C(10)) correlated to C(8) ( $\delta$ (C) 131.3), the quaternary olefinic C(12) ( $\delta$ (C) 138.6), and the Ac C=O ( $\delta$ (C) 170.3), while the Me at  $\delta$ (H) 1.60 (Me(21)) correlated to the olefinic C(11) and to C(13). On the other hand, the CH–O at  $\delta(H)$  4.99 (dd, J=9.9, 2.0 Hz) was assigned to H-C(15) on the basis of its correlation to C(16) as well as its <sup>3</sup>*J*-correlation to CH<sub>2</sub>(17) ( $\delta$ (C) 29.9) and Me(20) ( $\delta$ (C) 24.8). Furthermore, the COSY plot revealed the cross-peaks CH<sub>2</sub>(5)/CH<sub>2</sub>(6)/ H-C(7),  $CH_2(9)/H-C(10)/H-C(11)$ , and  $CH_2(13)/CH_2(14)/H-C(15)$  confirming the sequence of the linear C-chain C(12) to C(15), that was also suggested by the upfield resonance of C(15) ( $\delta$ (C) 76.0) relative to that of **1** ( $\delta$ (C) 83.6).



Fig. 3. Key HMBC  $(H \rightarrow C)$  and COSY (-) of 2

The molecular formula  $C_{22}H_{32}O_4$  was assigned to **3** as indicated by the HR-ESI-MS and <sup>13</sup>C-NMR data (unsaturation degree 7). The IR spectrum revealed the presence of OH (3448 cm<sup>-1</sup>) and lactone (1764 cm<sup>-1</sup>) groups. The NMR data (*Tables 1* and 2) suggested a closely similar structure to that of 2, except for the presence of one OH group in **3** instead of two AcO groups in **2**. The CH–O at  $\delta(H)$  3.64 (d, J=10.1 Hz, H-C(15)) correlated to the quaternary C-O at  $\delta(C)$  88.9 (C(16)), while the Me(20) at  $\delta(H)$  1.35 correlated with the CH–O at  $\delta(C)$  75.5 (C(15)) and 88.9 (C(16)) and  $CH_2(17)$  at  $\delta(C)$  27.8, thereby locating an OH group at C(15) (EI-MS fragment at m/z243 ( $[M - OH]^+$ )). The signal at  $\delta(H)$  5.16 (t, J = 6.6 Hz, 2 H) was assigned to two olefinic H-atoms of two tri-substituted C=C bonds, both flanked by two CH<sub>2</sub> groups. Apparently, one of the olefinic H-atoms belonged to H-C(7) due to its COSY crosspeak with H-C(6) as well as the HMBCs CH<sub>2</sub>(5) ( $\delta$ (H) 2.41)/C(7) ( $\delta$ (C) 123.9), H-C(7)/C(22) ( $\delta(C)$  15.9), and Me(22) ( $\delta(H)$  1.58)/C(8) ( $\delta(C)$  135.6) and C(9) ( $\delta(C)$ 39.6). The same olefinic signal ( $\delta$ (H) 5.16) correlated with Me(21) ( $\delta$ (C) 16.0) and C(9), while Me(21) ( $\delta$ (H) 1.61) correlated with C(11) ( $\delta$ (C) 125.4), C(12) ( $\delta$ (C) 134.4) and C(13) ( $\delta$ (C) 36.2) suggesting a C(11)=C(12) bond. This was confirmed by COSY cross-peaks between CH<sub>2</sub>(9), CH<sub>2</sub>(10), and CH<sub>2</sub>(11) and EI-MS fragment ions at m/z135 and 157 resulting from fission between C(8) and C(9) and between C(12) and C(13), respectively. The geometry of both C=C bonds were (E) as deduced from the chemical shifts of C(22) and C(21). NOESY Correlations H-C(15)/Me(20) suggested their  $\beta$ -orientation and hence, an  $\alpha$ -orientation of OH–C(15).

The molecular formula of **4** was determined as  $C_{23}H_{34}O_5$  on the basis of HR-ESI-MS (unsaturation degree 7). The <sup>13</sup>C-NMR data (*Table 2*) revealed the presence of furan and 5-membered lactone rings, of two tri-substituted C=C bonds similar to those of **2** and **3**, of two CH–O groups ( $\delta$ (C) 75.2 and 76.1), and of one MeO group ( $\delta$ (C) 55.7). The CH–O signal at  $\delta$ (H) 3.59 (*d*, *J*=9.9 Hz) was assigned to H–C(15) as indicated by its large coupling constant (*Table 1*) as well as the HMBCs CH<sub>2</sub>(17) and Me(20)/C(15), and Me(20)/C(16) ( $\delta$ (C) 89.1 (C)) and C(17) ( $\delta$ (C) 27.8). The CH–O at  $\delta$ (H) 3.98 (*m*) correlated with MeO, the quaternary C(8) ( $\delta$ (C) 132.3), and C(12) ( $\delta$ (C) 138.8) and had a COSY cross peak with H–C(11) ( $\delta$ (H) 5.01 (*d*, *J*=8.8 Hz)), implying attachment of the MeO group at C(10). Additionally, the HMBC spectrum showed the correlations MeO ( $\delta$ (H) 3.12 (*s*))/C(10) and Me(21)/C(11) and C(13). To determine the absolute configuration at C(15), *Mosher*'s method was attempted but was unsuccessful, presumably because **4** is unstable. The proposed structure of **4** is to be considered as tentative.

The molecular formula  $C_{23}H_{34}O_5$  was assigned to **5** from its HR-ESI-MS, implying that it is isomeric with **4**. The HMBCs Me(22) ( $\delta$ (H) 1.54 (s))/C(7) ( $\delta$ (C) 124.9 (CH)) and C(9) ( $\delta$ (C) 42.7), and H–C(7) ( $\delta$ (H) 5.15 (t))/C(22) ( $\delta$ (C) 16.2) (data in *Tables 1* and 2), along with an EI-MS fragment ion at m/z 135 (C(8)–C(9) fission), confirmed the C(7)=C(8) bond. HMBC Data confirmed the OH substitution at C(15) as in **3** and **4** (MS; m/z 373 ([M–OH]<sup>+</sup>)). The quaternary C–O at  $\delta$ (C) 77.1 (C(12)) correlated to H-atoms at  $\delta$ (H) 1.85 and 1.59 (CH<sub>2</sub>(13)), 1.22 (Me(21)), 3.20 (MeO), as well as two *trans*-olefinic H-atoms at  $\delta$ (H) 5.49 (dt, J=15.5, 6.5 Hz, H–C(10)) and 5.34 (dd, J= 15.5, 1.0 Hz, H–C(11)). Additionally, H–C(10) correlated to the quaternary C(8) ( $\delta$ (C) 134.3) and C(12), while H–C(11) correlated to the allylic positions C(9) and C(21) ( $\delta$ (C) 21.5) suggesting a C(8), C(12) connection *via* an (E)-allyl moiety C(9)-C(10)=C(11). The structure was further verified by the HMBCs Me(22) ( $\delta$ (H) 1.54)/C(7) and C(9), and Me(21)/C(11) and C(13) ( $\delta$ (C) 39.8), by the COSY crosspeaks CH<sub>2</sub>(9)/H-C(10)/H-C(11) and CH<sub>2</sub>(13)/CH<sub>2</sub>(14)/H-C(15), and by EI-MS fragment ions at *m*/*z* 175 and 215 generated by C(11)-C(12) fission. The coupling constant of *J*(10,11) = 15.5 Hz points to an (*E*) geometry of this C=C-bond.

The spectroscopic data (Tables 1 and 2) of irciformonin J (6), molecular formula  $C_{22}H_{32}O_5$ , revealed a structure similar to that of 5, except for the absence of the MeO group. The <sup>1</sup>H-NMR spectrum showed one CH–O group at  $\delta$ (H) 3.65 (d, J=9.4 Hz, H-C(15)) and an olefinic H-atom at  $\delta(H)$  5.19 (t, J=6.7 Hz, H-C(7)), as well as trans-olefinic H-atoms at  $\delta(H)$  5.58 (m, H-C(10)) and 5.48 (br. d, J=15.6 Hz, H-C(11)). The COSY and HMBC data verified a structure similar to 5 but with an OH group instead of the MeO group at C(12). The J value of H-C(15) and the chemical shifts of C(15), C(16), and C(20) resembled those of compounds 3-5, suggesting the same configuration at C(15) and C(16). This led to structure proposal 6 for irciformonin J. Although structure  $\mathbf{6}$  seemed identical to that reported earlier from our group for irciformonin A [16], the two compounds differed in their NMR data of C(12), C(15), and H-C(15) that resonated at lower field in the case of irciformonin A  $(\delta(C)$  83.3 and 82.6, and  $\delta(H)$  4.00, resp.) relative to those of **6** ( $\delta(C)$  72.8, 76.0, and  $\delta(H)$  3.65). We believe that irciformonin A (8) possessing a tetrahydrofuran ring underwent spontaneous hydration after running the NMR spectra and before the determination of its HR-ESI-MS. This caused the previously incorrect identification of 8 to be 6. The authors regret that the NMR and MS data of 8 were not concomitant in its first isolation [16]. Irciformonin A was also isolated during the present study and identified by comparison with published data [16]; subsequent hydration was induced by traces of dilute HCl which produced 6 by opening of the tetrahydrofuran ring of 8.

The HR-ESI-MS data of **7** demonstrated a molecular-ion peak at m/z 397.1991  $([M + Na]^+)$  suggesting a molecular formula  $C_{22}H_{30}O_5$ . The <sup>13</sup>C-NMR data (*Table 2*) displayed a C=O at  $\delta$ (C) 177.1, diagnostic of a 5-membered lactone ring as in **1**–**6**, along with an additional C=O at  $\delta$ (C) 174.0, and three C=C bonds at  $\delta$ (C) 144.6 (CH), 133.7 (C), 123.6 (CH), 135.4 (C), 125.7 (CH), and 136.5 (CH). The HMBC data of **7** (*Fig. 4*) verified the presence of a  $\gamma$ -lactone ring linked with the tetrahydrofuran ring as in compound **1**. The olefinic H-atoms at  $\delta$ (H) 5.10 (br. t, J = 6.8 Hz, H–C(7)), 5.53 (m, H–C(10)), and 5.40 (t, J = 15.2 Hz, H–C(11)) (*Table 1*) were assigned with the aid of HMBC and COSY data. The CH<sub>2</sub>O signal at  $\delta$ (H) 4.77 (br. s, CH<sub>2</sub>(1)) showed a COSY cross-peak with the olefinic signal at  $\delta$ (C) 133.7 (C(3)), and the C=O at  $\delta$ (C) 174.0 (C(4)). We suggest that C(3) of the  $\alpha,\beta$ -unsaturated  $\gamma$ -lactone ring of **7** is connected with C(5). This finding was supported by the HMBCs CH<sub>2</sub>(5)/C(2) and C(4), and

Fig. 4. Selected HMBC  $(H \rightarrow C)$  and COSY (-) of 7

H-C(2)/C(3) and C(4). The configuration of **7** was tentatively assigned by comparing the <sup>1</sup>H- and <sup>13</sup>C-NMR data with those of **1**.

The isolated sesterterpenes 1-7 were tested against HSV-1 *in vitro*. They exhibited very weak activity as compared with acyclovir. A preliminary study on resting cells and cells activated with PHA (phytohemagglutinin) were tested with compounds 1-7 at a concentration of 100 µg/ml (*Table 3*). The inhibition of cell proliferation was determined by the uptake of tritiated thymidine. Among them, compound **5** exhibited significant inhibition on peripheral blood mononuclear cell (PBMC) proliferation induced by PHA.

 Table 3. Effects of Compounds 1–7 on PBMC (peripheral blood mononuclear cell) Proliferation

 Induced by PHA (phytohemagglutinin)

| Compound [100 µg/ml]                         | Activity [%]               |                           |                        |  |  |  |
|----------------------------------------------|----------------------------|---------------------------|------------------------|--|--|--|
|                                              | Resting <sup>a</sup> )     | PHA [0.5 μg/ml]           | PHA [5 µg/ml]          |  |  |  |
| 1                                            | $-73.0\pm6.7$              | $13.7 \pm 4.4$            | $-48.2 \pm 4.1$        |  |  |  |
| 2                                            | $-16.3\pm1.5$              | $-12.9\pm1.4$             | $-12.5\pm1.0$          |  |  |  |
| 3                                            | $84.4\pm21.6$              | $17.5 \pm 7.4$            | $-23.2\pm1.6$          |  |  |  |
| 4                                            | $-22.0\pm2.6$              | $-39.6 \pm 3.1$           | $-47.8\pm6.7$          |  |  |  |
| 5                                            | $69.1\pm6.8$               | $-22.8 \pm 5.6$           | $-72.3\pm0.9$          |  |  |  |
| 6                                            | $6.5\pm7.7$                | $-15.7\pm4.5$             | $-1.4 \pm 3.4$         |  |  |  |
| 7                                            | $74.6\pm2.7$               | $-6.6\pm1.5$              | $-35.7\pm2.4$          |  |  |  |
| IL-2 [10 U/ml]                               | $95.3\pm10.1$              | $208\pm25.7$              | $208\pm25.7$           |  |  |  |
| Cyclosporine A [2.5 µg/ml]                   | $-15.9\pm4.4$              | $-92.2\pm6.8$             | $-92.2\pm6.8$          |  |  |  |
| <sup>a</sup> ) Negative values represent inh | ibitory activity; positive | values represent enhancen | nent of proliferation. |  |  |  |

The authors are indebted to the *National Science Council*, Taipei, Taiwan, for financial support (Grant # NSC 96-2320-B-110-009).

## **Experimental Part**

General. Prep. TLC: pre-coated silica gel plates (SiO<sub>2</sub>; silica gel 60 F-254, 1 mm; Merck). Column chromatography (CC): SiO<sub>2</sub> 60 (Merck) and Sephadex LH-20 (Amersham Pharmacia Biotech AB, Uppsala, Sweden). HPLC: Hitachi system; LiChrospher<sup>®</sup> Si 60 (5 µm, 250–10; Merck) and LiChrospher<sup>®</sup> 100 RP-18e (5 µm, 250–10; Merck) for normal and reversed-phase, resp. Optical rotations: Jasco-DIP-1000 polarimeter. UV Spectra: Hitachi-U-3210 spectrophotometer;  $\lambda_{max}$  (log  $\varepsilon$ ) in nm. IR Spectra: Hitachi-T-2001 spectrophotometer;  $\tilde{v}_{max}$  in cm<sup>-1</sup>. <sup>1</sup>H- and <sup>13</sup>C-NMR, COSY, HMQC, HMBC, and NOESY Experiments: Bruker-FT-300 spectrometer; at 300 (<sup>1</sup>H) and 75 MHz (<sup>13</sup>C); CDCl<sub>3</sub> solns.;  $\delta$  in ppm rel. to Me<sub>4</sub>Si as internal standard, J in Hz. EI-MS: VG-Quattro-5022 mass spectrometer; in m/z (rel. %). HR-ESI-MS: Shimadzu-LCMS-2010A spectrometer; in m/z (rel. %).

Animal Material. The sponge Ircinia formosana was collected by scuba diving off the coast of eastern Taiwan, at a depth of 20 m, in June 2005, and frozen shortly after collection. A specimen (GSPN-11) and a photo are deposited with the School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.

*Extraction and Isolation.* The sponge material (wet weight 500 g) was chopped and exhaustively extracted with CH<sub>2</sub>Cl<sub>2</sub>/acetone/MeOH 1:1:1 at r.t. The resulting extract was filtered and concentrated under vacuum then partitioned between AcOEt/H<sub>2</sub>O to provide the AcOEt extract. The latter (25 g) was separated by flash CC (SiO<sub>2</sub>, hexane/CH<sub>2</sub>Cl<sub>2</sub> 20:1 $\rightarrow$ 0:1, then CH<sub>2</sub>Cl<sub>2</sub>/MeOH 100:1 $\rightarrow$ 5:1): *Fractions 1–20. Fr. 3* (eluted with CH<sub>2</sub>Cl<sub>2</sub>/MeOH 90:1; 3.04 g) was subjected to CC (SiO<sub>2</sub>, hexane/AcOEt

2108

25 :1 → 0 :1, then AcOEt/MeOH 100 :1 → 1 :1): irciformonin A (= rel-(2R,2'S,5'S)-5'-[(1E,4E)-7-(furan-3-yl)-4-methylhepta-1,4-dien-1-yl]hexahydro-2,5'-dimethyl[2,2'-bifuran]-5(2 H)-one; **8**; 453 mg) and a mixture *Fr. 3.M. Fr. 3.M* (938 mg) was subjected to CC (SiO<sub>2</sub>, hexane/AcOEt 25 :1 → 0 :1, then AcOEt/ MeOH 100 :1 → 40 :1). Fraction *Fr. 3.M.12* (eluted with AcOEt/MeOH 80 :1; 520 mg) was repeatedly subjected to reversed-phase HPLC (MeOH/H<sub>2</sub>O/MeCN 3 :1:1): **1** (10 mg), **2** (50 mg), **3** (22 mg), **4** (89 mg), and **5** (84 mg). *Fr.* 5 (eluted with CH<sub>2</sub>Cl<sub>2</sub>/MeOH 70 :1; 4.8 g) subjected to CC (SiO<sub>2</sub>, hexane/ AcOEt 50 :1 → 0 :1, then AcOEt/MeOH 100 :1 → 10 :1). The fraction eluted with AcOEt/MeOH 40 :1 was purified by CC (*Sephadex LH-20*, CH<sub>2</sub>Cl<sub>2</sub>/MeOH 1:1): *Fractions* 5.*L*<sub>1</sub> and 5.*L*<sub>2</sub>. *Fr.* 5.*L*<sub>2</sub> (3.9 g) was subjected to reversed-phase HPLC (MeOH 15 :5 :1) and the fraction eluted with AcOEt/MeOH 60 :1 (1.53 g) was subjected to reversed-phase HPLC (MeOH/H<sub>2</sub>O/MeCN 65 :30 :5) followed by normal-phase HPLC (hexane/CH<sub>2</sub>Cl<sub>2</sub>/MeOH 15 :5 :1) and purification by prep. TLC (SiO<sub>2</sub>, hexane/ AcOEt 20 :1 → 0 :1), and the fraction eluted with hexane/AcOEt 3 :1 was purified by reversed-phase HPLC (MeOH/H<sub>2</sub>O/MeCN 55 :40 :5): **7** (4 mg).

Irciformonin E (= rel-(2R,2'S,5'S)-5'-[(4E)-7-(Furan-3-yl)-4-methyl-2-oxohept-4-en-1-yl]hexahydro-2,5'-dimethyl[2,2'-bifuran]-5(2 H)-one; **1**): Colorless powder.  $[a]_{25}^{25} = -3.5$  (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>). IR (CH<sub>2</sub>Cl<sub>2</sub>): 1768 (lactone), 1710 (C=O), 1063 (C-O), 943 (furan). <sup>1</sup>H- and <sup>13</sup>C-NMR: Tables 1 and 2. EI-MS: 397 ( $M^+$ ), 191, 183, 135, 99 (100), 67. HR-ESI-MS: 397.1989 ( $[M + Na]^+$ , C<sub>22</sub>H<sub>30</sub>NaO<sup>+</sup><sub>5</sub>; calc. 397.1991).

Irciformonin F (= rel (5R) - 5 - [(15, 4E, 8E) - 1, 6 - Bis(acetyloxy) - 11 - furan - 3 - yl) - 4,8 - dimethylundeca - 4,8 - dien - 1 - yl]dihydro - 5 - methylfuran - 2(3 H) - one;**2** $): Colorless powder. <math>[\alpha]_{D}^{25} = -4.2 \ (c = 4.6, \text{ CH}_2\text{Cl}_2)$ . IR (CH<sub>2</sub>Cl<sub>2</sub>): 1768 (lactone), 1738 (C=O, ester), 1240, 1022, 943, 735. <sup>1</sup>H- and <sup>13</sup>C-NMR: *Tables 1* and 2. EI-MS: 460 ( $M^+$ ), 400 ([M - AcOH]<sup>+</sup>), 342 ([M - 2 AcOH]<sup>+</sup>), 209, 135, 99 (100), 67. HR-ESI-MS: 483.2362 ([M + Na]<sup>+</sup>, C<sub>26</sub>H<sub>36</sub>NaO<sup>‡</sup>; calc. 483.2359).

*Irciformonin G* (= rel-(5R)-5-*[*(1S,4E,8E)-11-(*Furan-3-yl*)-1-hydroxy-4,8-dimethylundeca-4,8-dimethyldihydro-5-methylfuran-2(3 H)-one; **3**): Colorless powder.  $[a]_{25}^{25} = +5.4$  (c = 2.4, CH<sub>2</sub>Cl<sub>2</sub>). IR (CH<sub>2</sub>Cl<sub>2</sub>): 3448 (OH), 1764 (lactone), 1071, 941. <sup>1</sup>H- and <sup>13</sup>C-NMR: *Tables 1* and 2. EI-MS: 360 ( $M^+$ ), 343 ( $[M - OH]^+$ ), 157, 135, 99 (100), 67. HR-ESI-MS: 361.2380 ( $[M + H]^+$ , C<sub>22</sub>H<sub>33</sub>O<sub>4</sub><sup>+</sup>; calc. 361.2379).

*Irciformonin H* (= rel-(5R)-5-*[*(*I*\$,4E,8E)-11-(*Furan-3-yl*)-1-hydroxy-6-methoxy-4,8-dimethylundeca-4,8-dien-1-yl]dihydro-5-methylfuran-2(3 H)-one; **4**): Colorless powder. [ $\alpha$ ]<sub>D</sub><sup>5</sup> = +5.7 (c = 7.0, CH<sub>2</sub>Cl<sub>2</sub>). IR (CH<sub>2</sub>Cl<sub>2</sub>): 3424 (OH), 1765 (lactone), 1076, 942. <sup>1</sup>H- and <sup>13</sup>C-NMR: *Tables 1* and 2. EI-MS: 390 ( $M^+$ ), 359 ([M - MeO]<sup>+</sup>), 343 ([M - MeO - OH]<sup>+</sup>), 241, 149, 135, 99 (100), 67. HR-ESI-MS: 413.2301 ([M + Na]<sup>+</sup>, C<sub>23</sub>H<sub>34</sub>NaO<sub>5</sub><sup>+</sup>; calc. 413.2304).

*Irciformonin I* (= rel-(5R)-5-*[*(1S,5E,8E)-11-(*Furan-3-yl*)-1-hydroxy-4-methoxy-4,8-dimethylundeca-5,8-dien-1-yl]dihydro-5-methylfuran-2(3 H)-one; **5**): Colorless powder.  $[a]_{D}^{25} = +2.3$  (c = 7.8, CH<sub>2</sub>Cl<sub>2</sub>). IR (CH<sub>2</sub>Cl<sub>2</sub>): 3426 (OH), 1764 (lactone), 1072, 943. <sup>1</sup>H- and <sup>13</sup>C-NMR: *Tables 1* and 2. EI-MS: 390 ( $M^+$ ), 359 ( $[M - MeO]^+$ ), 343 ( $[M - MeO - OH]^+$ ), 233, 209, 203, 135, 99 (100), 67. HR-ESI-MS: 413.2301 ( $[M + Na]^+$ , C<sub>23</sub>H<sub>34</sub>NaO<sup>±</sup><sub>3</sub>; calc. 413.2304).

*Irciformonin J* (= rel-(5R)-5-*[*(15,5E,8E)-11-(*Furan-3-yl*)-1,4-*dihydroxy*-4,8-*dimethylundeca-5*,8-*dien-1-yl*]*dihydro-5-methylfuran-2*(3 H)-*one*; **6**): Colorless powder.  $[a]_{D}^{25} = +2.2$  (c = 0.9, CH<sub>2</sub>Cl<sub>2</sub>). IR (CH<sub>2</sub>Cl<sub>2</sub>): 3422 (OH), 1760 (lactone), 1072, 942, 736. <sup>1</sup>H- and <sup>13</sup>C-NMR: *Tables I* and 2. EI-MS: 376 ( $M^+$ ), 343 ( $[M - 2 \text{ OH}]^+$ ), 195, 135, 99 (100), 67. HR-ESI-MS: 399.2142 ( $[M + Na]^+$ , C<sub>22</sub>H<sub>32</sub>NaO<sup>+</sup><sub>3</sub>; calc. 399.2147).

*Irciformonin K* (= rel-(2R,2'S,5S)-5-*[*(1E,4E)-7-(2,5-*Dihydro-2-oxofuran-3-yl*)-4-methylhepta-1,4dien-1-yl]hexahydro-2,5'-dimethyl[2,2'-bifuran]-5(2 H)-one; **7**): Colorless powder.  $[\alpha]_{D}^{25} = +19.6$  (c = 0.1, CH<sub>2</sub>Cl<sub>2</sub>). UV (EtOH): 241 (3.20). IR (CH<sub>2</sub>Cl<sub>2</sub>): 1763 (lactone), 1075. <sup>1</sup>H- and <sup>13</sup>C-NMR: *Tables 1* and 2. EI-MS: 397 ( $M^+$ ), 191, 183, 135, 99 (100), 67. HR-ESI-MS: 397.1991 ([M + Na]<sup>+</sup>, C<sub>22</sub>H<sub>30</sub>NaO<sub>5</sub><sup>+</sup>; calc. 397.1984).

*Cell Culture and Viruses.* Vero cells were cultured in minimal essential medium (MEM; *Gibco*, Grand Island, NY) supplemented with 10% fetal calf serum (FCS; *Hyclone*, Logan, UT), 100 U/ml of penicillin, and 100  $\mu$ g/ml of streptomycin and incubated at 37° in a 5% CO<sub>2</sub> incubator. To prepare HSV-1 (KOS strain, VR-1493, ATCC) stocks, Vero cells were infected by HSV-1 at a multiplicity of infection of

3 plaque forming units (PFU)/cell and harvested at 24 h post-infection and centrifuged at 1500 g at 4° for 20 min. The supernatant was collected and stored at  $-70^{\circ}$  for use.

*Plaque Reduction Assay.* The assay followed procedures described previously [19]. Vero cells  $(3.5 \cdot 10^5/\text{dish})$  were incubated with 100 PFU of HSV-1, and various compounds  $(100 \,\mu\text{M})$  or acyclovir  $(2.5 \,\mu\text{M})$  were added to the cells. The viruses were absorbed for 1 h at 37°, and 1% methylcellulose was added to each well. After 5 d, the virus plaques formed in HeLa cells were counted by crystal-violet staining. The activities of various compounds and acyclovir for inhibition of plaque formation were calculated. Acyclovir was used as a positive control.

Lymphoproliferation Test. The lymphoproliferation test was modified from that previously described [20][21]. The density of PBMC was adjusted to  $2 \cdot 10^6$  cells/ml before use. Cell suspension (100 µl) was applied into each well of a 96-well flat-bottomed plate (*Nunc 167008, Nunclon*; Roskilde, Denmark) with or without phytohemaglutinin (*Sigma*). Various compounds were added to the cells at 100 µM. The plates were incubated in a 5% CO<sub>2</sub> air humidified atmosphere at 37° for 3 d. Subsequently, tritiated thymidine (1 µCi/well, *NEN*) was added into each well. After 16 h incubation, the cells were harvested on glassfiber filters by an automatic harvester (*Multimash 2000; Dynatech*, Billingshurst, U.K.). Radioactivity on the filters was measured by scintillation counting. Interleukin 2 (IL-2) and cyclosporine A were used as positive and negative standard compounds, resp.

## REFERENCES

- [1] J. W. Blunt, B. R. Copp, W. P. Hu, M. H. G. Munro, P. T. Northcote, M. R. Prinsep, Nat. Prod. Rep. 2007, 24, 31.
- [2] R. W. Newbold, P. R. Jensen, W. Fenical, J. R. Pawlik, Aquat. Microb. Ecol. 1999, 19, 279.
- [3] J. Pawlik, G. McFall, S. Zea, J. Chem. Ecol. 2002, 28, 1103.
- [4] Y. Venkateswarlu, M. V. R. Reddy, M. R. Rao, J. Nat. Prod. 1996, 59, 876.
- [5] G. W. Zhang, X. O. Ma, C. X. Zhang, J. Y. Su, W. C. Ye, X. Q Zhang, X. S. Yao, L. M. Zeng, *Helv. Chim. Acta.* 2005, 88, 885.
- [6] K. Kondo, H. Shigemori, Y. Kikuchi, M. Ishibashi, T. Sasaki, J. Kobayashi, J. Org. Chem. 1992, 57, 2480.
- [7] Y. Venkateswarlu, M. V. R. Reddy, J. Nat. Prod. 1994, 57, 1286.
- [8] C. M. S. Mau, Y. Nakao, W. Y. Yoshida, P. J. Scheuer, J. Org. Chem. 1996, 61, 6302.
- [9] R. J. Capone, J. K. MacLeod, Aust. J. Chem. 1987, 40, 1327.
- [10] Y. Liu, S. Zhang, P. J. M. Abreu, Nat. Prod. Rep. 2006, 23, 630.
- [11] K. A. El Sayed, A. M. S. Mayer, M. Kelly, M. T. Hamann, J. Org. Chem. 1999, 64, 9258.
- [12] M. Tsoukatou, H. Siapi, C. Vagias, V. Roussis, J. Nat. Prod. 2003, 66, 444.
- [13] K. K. H. Ang, M. J. Holmes, T. Higa, M. T. Hamann, U. A. K. Kara, Antimicrob. Agents Chemother. 2000, 44, 1645.
- [14] S. Rifai, A. Fassouane, P. Pinho, A. Kijjoa, N. Nazareth, M. S. J. Nascimento, W. Herz, Mar. Drugs 2005, 3, 15.
- [15] K. Choi, J. Hong, C. O. Lee, D. Kim, C. J. Sim, K. S. Im, J. H. Jung, J. Nat. Prod. 2004, 67, 1186.
- [16] Y. C. Shen, K. L. Lo, Y. C. Lin, A. T. Khalil, Y. H. Kuo, P. S. Shih, Tetrahedron Lett. 2006, 47, 4007.
- [17] Y. Liu, B. H. Bae, N. Alam, J. Hong, C. J. Sim, C.-O. Lee, K. S. Im, J. H. Jung, J. Nat. Prod. 2001, 64, 1301.
- [18] Y. Liu, T. A. Mansoor, J. Hong, C.-O. Lee, C. J. Sim, K. S. Im, N. D. Kim, J. H. Jung, J. Nat. Prod. 2003, 66, 1451.
- [19] Y. C. Kuo, L. C. Lin, W. J. Tsai, C. J. Chou, S. H. Kung, Y. H. Ho, Antimicrob. Agents 2002, 46, 2854.
- [20] Y. C. Kuo, N. S. Yang, C. J. Chou, L. C. Lin, W. J. Tsai, Mol. Pharmacol. 2000, 58, 1057.
- [21] Y. C. Kuo, C. K. Lu, L. W. Huang, Y. H. Kuo, C. Chang, F. L. Hsu, T. H. Lee, *Planta Med.* 2005, 71, 412.

Received January 27, 2009

2110